3.2.99 \(\int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx\) [199]

3.2.99.1 Optimal result
3.2.99.2 Mathematica [C] (verified)
3.2.99.3 Rubi [A] (verified)
3.2.99.4 Maple [A] (verified)
3.2.99.5 Fricas [B] (verification not implemented)
3.2.99.6 Sympy [F(-1)]
3.2.99.7 Maxima [F]
3.2.99.8 Giac [B] (verification not implemented)
3.2.99.9 Mupad [B] (verification not implemented)

3.2.99.1 Optimal result

Integrand size = 22, antiderivative size = 125 \[ \int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx=-\frac {\arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt {\sqrt {a}-\sqrt {b}} \sqrt [4]{b} d}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt {\sqrt {a}+\sqrt {b}} \sqrt [4]{b} d} \]

output
-1/2*arctan(b^(1/4)*cos(d*x+c)/(a^(1/2)-b^(1/2))^(1/2))/b^(1/4)/d/a^(1/2)/ 
(a^(1/2)-b^(1/2))^(1/2)-1/2*arctanh(b^(1/4)*cos(d*x+c)/(a^(1/2)+b^(1/2))^( 
1/2))/b^(1/4)/d/a^(1/2)/(a^(1/2)+b^(1/2))^(1/2)
 
3.2.99.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 2.29 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.46 \[ \int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\frac {i \text {RootSum}\left [b-4 b \text {$\#$1}^2-16 a \text {$\#$1}^4+6 b \text {$\#$1}^4-4 b \text {$\#$1}^6+b \text {$\#$1}^8\&,\frac {-2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}+i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}+2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^3-i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^3}{-b-8 a \text {$\#$1}^2+3 b \text {$\#$1}^2-3 b \text {$\#$1}^4+b \text {$\#$1}^6}\&\right ]}{2 d} \]

input
Integrate[Sin[c + d*x]/(a - b*Sin[c + d*x]^4),x]
 
output
((I/2)*RootSum[b - 4*b*#1^2 - 16*a*#1^4 + 6*b*#1^4 - 4*b*#1^6 + b*#1^8 & , 
 (-2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1 + I*Log[1 - 2*Cos[c + d*x 
]*#1 + #1^2]*#1 + 2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^3 - I*Log[ 
1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^3)/(-b - 8*a*#1^2 + 3*b*#1^2 - 3*b*#1^4 + 
 b*#1^6) & ])/d
 
3.2.99.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.99, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {3042, 3694, 1406, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)}{a-b \sin (c+d x)^4}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle -\frac {\int \frac {1}{-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b}d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 1406

\(\displaystyle -\frac {\frac {\sqrt {b} \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cos ^2(c+d x)}d\cos (c+d x)}{2 \sqrt {a}}-\frac {\sqrt {b} \int \frac {1}{-b \cos ^2(c+d x)-\left (\sqrt {a}-\sqrt {b}\right ) \sqrt {b}}d\cos (c+d x)}{2 \sqrt {a}}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\frac {\sqrt {b} \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cos ^2(c+d x)}d\cos (c+d x)}{2 \sqrt {a}}+\frac {\arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}-\sqrt {b}}}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\frac {\arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}-\sqrt {b}}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}+\sqrt {b}}}}{d}\)

input
Int[Sin[c + d*x]/(a - b*Sin[c + d*x]^4),x]
 
output
-((ArcTan[(b^(1/4)*Cos[c + d*x])/Sqrt[Sqrt[a] - Sqrt[b]]]/(2*Sqrt[a]*Sqrt[ 
Sqrt[a] - Sqrt[b]]*b^(1/4)) + ArcTanh[(b^(1/4)*Cos[c + d*x])/Sqrt[Sqrt[a] 
+ Sqrt[b]]]/(2*Sqrt[a]*Sqrt[Sqrt[a] + Sqrt[b]]*b^(1/4)))/d)
 

3.2.99.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1406
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^ 
2 - 4*a*c, 2]}, Simp[c/q   Int[1/(b/2 - q/2 + c*x^2), x], x] - Simp[c/q   I 
nt[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c 
, 0] && PosQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
3.2.99.4 Maple [A] (verified)

Time = 0.69 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.70

method result size
derivativedivides \(\frac {b \left (-\frac {\operatorname {arctanh}\left (\frac {\cos \left (d x +c \right ) b}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}+b \right ) b}}-\frac {\arctan \left (\frac {\cos \left (d x +c \right ) b}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{d}\) \(87\)
default \(\frac {b \left (-\frac {\operatorname {arctanh}\left (\frac {\cos \left (d x +c \right ) b}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}+b \right ) b}}-\frac {\arctan \left (\frac {\cos \left (d x +c \right ) b}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{d}\) \(87\)
risch \(-\frac {i \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (-1+\left (16 a^{3} b \,d^{4}-16 a^{2} b^{2} d^{4}\right ) \textit {\_Z}^{4}-8 a \,d^{2} \textit {\_Z}^{2} b \right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\left (\left (-16 i a^{2} b \,d^{3}+16 i a \,b^{2} d^{3}\right ) \textit {\_R}^{3}+\left (4 i a d +4 i d b \right ) \textit {\_R} \right ) {\mathrm e}^{i \left (d x +c \right )}+1\right )\right )}{2}\) \(108\)

input
int(sin(d*x+c)/(a-b*sin(d*x+c)^4),x,method=_RETURNVERBOSE)
 
output
1/d*b*(-1/2/(a*b)^(1/2)/(((a*b)^(1/2)+b)*b)^(1/2)*arctanh(cos(d*x+c)*b/((( 
a*b)^(1/2)+b)*b)^(1/2))-1/2/(a*b)^(1/2)/(((a*b)^(1/2)-b)*b)^(1/2)*arctan(c 
os(d*x+c)*b/(((a*b)^(1/2)-b)*b)^(1/2)))
 
3.2.99.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 703 vs. \(2 (85) = 170\).

Time = 0.34 (sec) , antiderivative size = 703, normalized size of antiderivative = 5.62 \[ \int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx=-\frac {1}{4} \, \sqrt {-\frac {{\left (a^{2} - a b\right )} d^{2} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} + 1}{{\left (a^{2} - a b\right )} d^{2}}} \log \left (-{\left ({\left (a^{2} b - a b^{2}\right )} d^{3} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} - a d\right )} \sqrt {-\frac {{\left (a^{2} - a b\right )} d^{2} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} + 1}{{\left (a^{2} - a b\right )} d^{2}}} + \cos \left (d x + c\right )\right ) + \frac {1}{4} \, \sqrt {-\frac {{\left (a^{2} - a b\right )} d^{2} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} + 1}{{\left (a^{2} - a b\right )} d^{2}}} \log \left (-{\left ({\left (a^{2} b - a b^{2}\right )} d^{3} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} - a d\right )} \sqrt {-\frac {{\left (a^{2} - a b\right )} d^{2} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} + 1}{{\left (a^{2} - a b\right )} d^{2}}} - \cos \left (d x + c\right )\right ) + \frac {1}{4} \, \sqrt {\frac {{\left (a^{2} - a b\right )} d^{2} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} - 1}{{\left (a^{2} - a b\right )} d^{2}}} \log \left (-{\left ({\left (a^{2} b - a b^{2}\right )} d^{3} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} + a d\right )} \sqrt {\frac {{\left (a^{2} - a b\right )} d^{2} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} - 1}{{\left (a^{2} - a b\right )} d^{2}}} + \cos \left (d x + c\right )\right ) - \frac {1}{4} \, \sqrt {\frac {{\left (a^{2} - a b\right )} d^{2} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} - 1}{{\left (a^{2} - a b\right )} d^{2}}} \log \left (-{\left ({\left (a^{2} b - a b^{2}\right )} d^{3} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} + a d\right )} \sqrt {\frac {{\left (a^{2} - a b\right )} d^{2} \sqrt {\frac {1}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} d^{4}}} - 1}{{\left (a^{2} - a b\right )} d^{2}}} - \cos \left (d x + c\right )\right ) \]

input
integrate(sin(d*x+c)/(a-b*sin(d*x+c)^4),x, algorithm="fricas")
 
output
-1/4*sqrt(-((a^2 - a*b)*d^2*sqrt(1/((a^3*b - 2*a^2*b^2 + a*b^3)*d^4)) + 1) 
/((a^2 - a*b)*d^2))*log(-((a^2*b - a*b^2)*d^3*sqrt(1/((a^3*b - 2*a^2*b^2 + 
 a*b^3)*d^4)) - a*d)*sqrt(-((a^2 - a*b)*d^2*sqrt(1/((a^3*b - 2*a^2*b^2 + a 
*b^3)*d^4)) + 1)/((a^2 - a*b)*d^2)) + cos(d*x + c)) + 1/4*sqrt(-((a^2 - a* 
b)*d^2*sqrt(1/((a^3*b - 2*a^2*b^2 + a*b^3)*d^4)) + 1)/((a^2 - a*b)*d^2))*l 
og(-((a^2*b - a*b^2)*d^3*sqrt(1/((a^3*b - 2*a^2*b^2 + a*b^3)*d^4)) - a*d)* 
sqrt(-((a^2 - a*b)*d^2*sqrt(1/((a^3*b - 2*a^2*b^2 + a*b^3)*d^4)) + 1)/((a^ 
2 - a*b)*d^2)) - cos(d*x + c)) + 1/4*sqrt(((a^2 - a*b)*d^2*sqrt(1/((a^3*b 
- 2*a^2*b^2 + a*b^3)*d^4)) - 1)/((a^2 - a*b)*d^2))*log(-((a^2*b - a*b^2)*d 
^3*sqrt(1/((a^3*b - 2*a^2*b^2 + a*b^3)*d^4)) + a*d)*sqrt(((a^2 - a*b)*d^2* 
sqrt(1/((a^3*b - 2*a^2*b^2 + a*b^3)*d^4)) - 1)/((a^2 - a*b)*d^2)) + cos(d* 
x + c)) - 1/4*sqrt(((a^2 - a*b)*d^2*sqrt(1/((a^3*b - 2*a^2*b^2 + a*b^3)*d^ 
4)) - 1)/((a^2 - a*b)*d^2))*log(-((a^2*b - a*b^2)*d^3*sqrt(1/((a^3*b - 2*a 
^2*b^2 + a*b^3)*d^4)) + a*d)*sqrt(((a^2 - a*b)*d^2*sqrt(1/((a^3*b - 2*a^2* 
b^2 + a*b^3)*d^4)) - 1)/((a^2 - a*b)*d^2)) - cos(d*x + c))
 
3.2.99.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\text {Timed out} \]

input
integrate(sin(d*x+c)/(a-b*sin(d*x+c)**4),x)
 
output
Timed out
 
3.2.99.7 Maxima [F]

\[ \int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\int { -\frac {\sin \left (d x + c\right )}{b \sin \left (d x + c\right )^{4} - a} \,d x } \]

input
integrate(sin(d*x+c)/(a-b*sin(d*x+c)^4),x, algorithm="maxima")
 
output
-integrate(sin(d*x + c)/(b*sin(d*x + c)^4 - a), x)
 
3.2.99.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 183 vs. \(2 (85) = 170\).

Time = 0.68 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.46 \[ \int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx=-\frac {\sqrt {a b} \sqrt {-b^{2} - \sqrt {a b} b} \arctan \left (\frac {\cos \left (d x + c\right )}{d \sqrt {-\frac {b d^{2} + \sqrt {{\left (a - b\right )} b d^{4} + b^{2} d^{4}}}{b d^{4}}}}\right )}{2 \, {\left (a b + \sqrt {a b} a\right )} d {\left | b \right |}} + \frac {\sqrt {a b} \sqrt {-b^{2} + \sqrt {a b} b} \arctan \left (\frac {\cos \left (d x + c\right )}{d \sqrt {-\frac {b d^{2} - \sqrt {{\left (a - b\right )} b d^{4} + b^{2} d^{4}}}{b d^{4}}}}\right )}{2 \, {\left (a b - \sqrt {a b} a\right )} d {\left | b \right |}} \]

input
integrate(sin(d*x+c)/(a-b*sin(d*x+c)^4),x, algorithm="giac")
 
output
-1/2*sqrt(a*b)*sqrt(-b^2 - sqrt(a*b)*b)*arctan(cos(d*x + c)/(d*sqrt(-(b*d^ 
2 + sqrt((a - b)*b*d^4 + b^2*d^4))/(b*d^4))))/((a*b + sqrt(a*b)*a)*d*abs(b 
)) + 1/2*sqrt(a*b)*sqrt(-b^2 + sqrt(a*b)*b)*arctan(cos(d*x + c)/(d*sqrt(-( 
b*d^2 - sqrt((a - b)*b*d^4 + b^2*d^4))/(b*d^4))))/((a*b - sqrt(a*b)*a)*d*a 
bs(b))
 
3.2.99.9 Mupad [B] (verification not implemented)

Time = 15.33 (sec) , antiderivative size = 361, normalized size of antiderivative = 2.89 \[ \int \frac {\sin (c+d x)}{a-b \sin ^4(c+d x)} \, dx=\frac {\ln \left (4\,a\,b^3\,\sqrt {\frac {1}{a\,b+\sqrt {a^3\,b}}}-4\,b^3\,\cos \left (c+d\,x\right )+\frac {4\,a\,b^4\,\cos \left (c+d\,x\right )}{a\,b+\sqrt {a^3\,b}}\right )\,\sqrt {-\frac {a\,b-\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^2\,b^2\right )}}}{d}+\frac {\ln \left (4\,b^3\,\cos \left (c+d\,x\right )-4\,a\,b^3\,\sqrt {\frac {1}{a\,b-\sqrt {a^3\,b}}}-\frac {4\,a\,b^4\,\cos \left (c+d\,x\right )}{a\,b-\sqrt {a^3\,b}}\right )\,\sqrt {-\frac {a\,b+\sqrt {a^3\,b}}{16\,\left (a^3\,b-a^2\,b^2\right )}}}{d}-\frac {\ln \left (4\,b^3\,\cos \left (c+d\,x\right )+4\,a\,b^3\,\sqrt {\frac {1}{a\,b+\sqrt {a^3\,b}}}-\frac {4\,a\,b^4\,\cos \left (c+d\,x\right )}{a\,b+\sqrt {a^3\,b}}\right )\,\sqrt {\frac {1}{a\,b+\sqrt {a^3\,b}}}}{4\,d}-\frac {\ln \left (4\,b^3\,\cos \left (c+d\,x\right )+4\,a\,b^3\,\sqrt {\frac {1}{a\,b-\sqrt {a^3\,b}}}-\frac {4\,a\,b^4\,\cos \left (c+d\,x\right )}{a\,b-\sqrt {a^3\,b}}\right )\,\sqrt {\frac {1}{a\,b-\sqrt {a^3\,b}}}}{4\,d} \]

input
int(sin(c + d*x)/(a - b*sin(c + d*x)^4),x)
 
output
(log(4*a*b^3*(1/(a*b + (a^3*b)^(1/2)))^(1/2) - 4*b^3*cos(c + d*x) + (4*a*b 
^4*cos(c + d*x))/(a*b + (a^3*b)^(1/2)))*(-(a*b - (a^3*b)^(1/2))/(16*(a^3*b 
 - a^2*b^2)))^(1/2))/d + (log(4*b^3*cos(c + d*x) - 4*a*b^3*(1/(a*b - (a^3* 
b)^(1/2)))^(1/2) - (4*a*b^4*cos(c + d*x))/(a*b - (a^3*b)^(1/2)))*(-(a*b + 
(a^3*b)^(1/2))/(16*(a^3*b - a^2*b^2)))^(1/2))/d - (log(4*b^3*cos(c + d*x) 
+ 4*a*b^3*(1/(a*b + (a^3*b)^(1/2)))^(1/2) - (4*a*b^4*cos(c + d*x))/(a*b + 
(a^3*b)^(1/2)))*(1/(a*b + (a^3*b)^(1/2)))^(1/2))/(4*d) - (log(4*b^3*cos(c 
+ d*x) + 4*a*b^3*(1/(a*b - (a^3*b)^(1/2)))^(1/2) - (4*a*b^4*cos(c + d*x))/ 
(a*b - (a^3*b)^(1/2)))*(1/(a*b - (a^3*b)^(1/2)))^(1/2))/(4*d)